Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets
نویسندگان
چکیده
The unified cardinalized probability hypothesis density (CPHD) filters for extended targets and unresolved targets are proposed. The theoretically rigorous measurementupdate equations for the proposed filters are derived according to the theory of random finite set (RFS) and finite-set statistics (FISST). By assuming that the predicted distributions of the extended targets and unresolved targets and the distribution of the clutter are Poisson, the exact extended-target and unresolved-target CPHD correctors reduce to the exact extended-target and unresolved-target PHD correctors, respectively. Since the exact CPHD and PHD corrector equations involve with a number of operations that grow exponentially with the number of measurements, the computationally tractable approximations for them are presented, which can be used when the extended targets and the unresolved targets are not too close together and the clutter density is not too large. Monte Carlo simulation results show that the approximate extended-target and unresolved-target CPHD filters, respectively, outperform the approximate extended-target and unresolved-target PHD filters a lot in estimating the target number and states, although the computational requirement of the CPHD filters is more expensive than that of the PHD filters. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملExtended Target Tracking with a Cardinalized Probability Hypothesis Density Filter, Report no. LiTH-ISY-R-2999
This technical report presents a cardinalized probability hypothesis density (CPHD) lter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) lter for such targets has already been derived by Mahler and a Gaussian mixture implementation has been proposed recently. This work relaxes the Poisson assumptions of the extended target PHD...
متن کاملBox-Particle Implementation and Comparison of Cardinalized Probability Hypothesis Density Filter
This paper develops a box-particle implementation of cardinalized probability hypothesis density filter to track multiple targets and estimate the unknown number of targets. A box particle is a random sample that occupies a small and controllable rectangular region of nonzero volume in the target state space. In box-particle filter the huge number of traditional point observations is instead by...
متن کاملPHD and CPHD Algorithms Based on a Novel Detection Probability Applied in an Active Sonar Tracking System
Underwater multi-targets tracking has always been a difficult problem in active sonar tracking systems. In order to estimate the parameters of time-varying multi-targets moving in underwater environments, based on the Bayesian filtering framework, the Random Finite Set (RFS) is introduced to multi-targets tracking, which not only avoids the problem of data association in multi-targets tracking,...
متن کاملHybrid multi-Bernoulli CPHD filter for superpositional sensors
We propose, for the superpositional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinalized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn targets and targets with low probability of existence. Our main cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 92 شماره
صفحات -
تاریخ انتشار 2012